让写作成为一种习惯,作文库欢迎您!
当前位置:首页 > > 学科 > > 数学 >

初高中数学ppt三角函数的性质,有没有高中三角函数的定义和性质????

2024-04-25 22:44:15数学访问手机版53

三角函数的性质

性 质


定义域 R R
值 域


周期性


奇偶性 奇函数 偶函数
单调性

对称中心


对称轴









________________________________________
性 质


定义域


值 域 R R
周期性


奇偶性 奇函数 奇函数
单调性


对称中心


对称轴 无 无







 ?
振幅变化初高中数学ppt三角函数的性质: 左右伸缩变化:
左右平移变化
上下平移变化

初中函数的概念及性质(三角函数除外,二次函数为重点!谢了!)

函数的概念和性质: 形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数. 图象做法:1.带定系数 2.描点 3.连线 图象是一条直线,一定经过坐标轴的原点 性质:当k>0时,图象经过一,三象限,y随x的增大而增大 当k<0时,图象经过二,四象限,y随x的增大而减小 形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数的图像为双曲线。它可以无限地接近坐标轴,但永不相交. 性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小, 当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大 形如y=kx+b(k为常数,且k不等于0),y就叫做x的正比例函数 正比例函数过原点(0,0),属于一次函数 k>0,b>O,则图象过1,2,3象限 k>0,b<0,则图象过1,3,4象限 k<0,b>0,则图象过1,2,4象限 k<0,b<0,则图象过2,3,4象限 二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0) a>0开口向上 a<0开口向下 a,b同号,对称轴在y轴左侧,反之,再y轴右侧 |x1-x2|=根号下b^2-4ac除以|a| 与y轴交点为(0,c) b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根 b^2-4ac<0,ax^2+bx+c=0无实根 b^2-4ac=0,ax^2+bx+c=0有两个相等的实根 对称轴x=-b/2a 顶点(-b/2a,(4ac-b^2)/4a) 顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a 函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减 函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减 当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大. 4.画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。 二次函数解析式的几种形式 (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点. (2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和 x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2). 求抛物线的顶点、对称轴、最值的方法 ①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a<0,y有最大值,当x=h时,y最大值=k. ②公式法:直接利用顶点坐标公式(- , ),求其顶点;对称轴是直线x=- ,若a>0,y有最小值,当x=- 时,y最小值= ,若a<0,y有最大值,当x=- 时,y最大值= . 6.二次函数y=ax2+bx+c的图像的画法 因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是: (1)先找出顶点坐标,画出对称轴; (2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); (3)把上述五个点按从左到右的顺序用平滑曲线连结起来.